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Abstract

A hereditary model and a fractional derivative model for the dynamic properties of flexible polyurethane
foams used in automotive seat cushions are presented. Non-linear elastic and linear viscoelastic properties
are incorporated into these two models. A polynomial function of compression is used to represent the non-
linear elastic behavior. The viscoelastic property is modelled by a hereditary integral with a relaxation
kernel consisting of two exponential terms in the hereditary model and by a fractional derivative term in the
fractional derivative model. The foam is used as the only viscoelastic component in a foam–mass system
undergoing uniaxial compression. One-term harmonic balance solutions are developed to approximate the
steady state response of the foam–mass system to the harmonic base excitation. System identification
procedures based on the direct non-linear optimization and a sub-optimal method are formulated to
estimate the material parameters. The effects of the choice of the cost function, frequency resolution of data
and imperfections in experiments are discussed. The system identification procedures are also applied to
experimental data from a foam–mass system. The performances of the two models for data at different
compression and input excitation levels are compared, and modifications to the structure of the fractional
derivative model are briefly explored. The role of the viscous damping term in both types of model is
discussed.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Flexible polyurethane foams are widely used in engineering applications, especially in
automotive seat cushions because they can provide degrees of comfort and protection not
achieved by any other single material. Since many seats are all-foam, by tuning the foam
properties it is possible to control the quasi-static and dynamic comfort of the seat occupant.
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However, much of the seat design in the automotive industry is based on experience from previous
designs without the benefit of a clear understanding of the properties of the foams used in the seat
cushions. Seat designers need seat-occupant models that incorporate accurate models of foam
behavior. Therefore, there is a strong need to characterize the quasi-static and dynamic properties
of foam.
As reported in Refs. [1,2], the quasi-static behavior of foam is significantly different from its

dynamic behavior. The dynamic properties also depend on the compression level and the
excitation amplitude [3,4]. Even at low excitation levels, foam can exhibit non-linear behavior [5].
Based upon a combination of observation and modelling of the foam material and the fluid
contained in the foam, models have been proposed that incorporate non-linear elastic elements [5]
and non-linear damping elements [7]. Because of the viscoelastic behavior [8,9], foam does not
recover immediately after the loading is released, i.e., the previous loading history affects the
current status. Depending on the type of foam, it may take several days to recover completely.
Creep and relaxation behavior are two manifestations of the viscoelastic properties of foam
[10,11].
Several types of models are used to characterize the uni-directional linear viscoelastic behavior

of foam. Sometimes, arrangements of springs and dashpots (Kelvin and Maxwell elements) are
used [10,12]. Other researchers [5,13,14] have modelled the relationship between stress and strain
in the foam as [15]

sðtÞ ¼ E EðtÞ �
Z t

0

Gðt � tÞEðtÞ dt
� �

; ð1Þ

where Gðt � tÞ is the material’s relaxation kernel, E is the instantaneous modulus, sðtÞ is the stress,
and EðtÞ is the strain. This is commonly referred to as the ‘hereditary model’. The relaxation kernel
Gðt � tÞ is often taken to be the summation of exponential terms [13]:

Gðt � tÞ ¼
XN

i¼1

aie
�aiðt�tÞ; ð2Þ

where the viscoelastic parameters ai and ai; i ¼ 1; 2;yN; are either real constants or occur in
complex conjugate pairs.
Fractional derivative models have also been used to describe behavior of viscoelastic materials

such as foam and rubber [16–18]. Bagley and Torvik [19] provided the theoretical basis for the use
of fractional derivative models to characterize viscoelasticity. In these models, the differential
constitutive relation is generalized by including derivatives with a fractional order [30] and the
stress–strain relationship takes the form

sðtÞ þ EsD
a1sðtÞ ¼ E0EðtÞ þ EDa2EðtÞ; ð3Þ

where Dai is the fractional derivative operator defined below in Eq. (8) and the fractional orders ai

are usually between 0 and 1.
Two models of the uni-directional motion of the foam–mass system shown in Fig. 1 are

considered here. Both models include non-linear elastic elements in the form of an odd-order
polynomial. To model the viscoelastic behavior one model incorporates the hereditary description
in Eq. (1) and the other model incorporates the fractional derivative description of Eq. (3). System
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identification techniques are then developed based on approximate one-term harmonic balance
solutions of the resulting equations for the one degree-of-freedom dynamic system. These
techniques are applied to simulation as well as experimental data, and results of their effectiveness
are reported. We should note that both White et al. [3] and Singh et al. [6] studied the same
physical system and used the ‘hereditary model’ to characterize the viscoelastic properties of
foam. While White et al. [3] used a model with N ¼ 1 for the relaxation kernel, the latter authors
showed that a model with N ¼ 2 and complex conjugate terms gives much better results. In the
present work, the hereditary model used is again with N ¼ 2 though the identification problem is
reformulated in a more direct way.
This paper is organized as follows: the non-linear viscoelastic models for uni-directional

response of the foam–mass system are first described in Section 2. This is followed by a discussion
of frequency responses corresponding to the two linear models. Then, the harmonic response
approximation for the complete non-linear model is developed using the method of harmonic
balance. These equations are then used in a system identification procedure in Section 3 to
estimate the non-linear elastic and linear viscoelastic model parameters for the two types of
models. Sensitivity of the identification procedure to the choice of cost function, resolution of data
and presence of noise is investigated. Finally, in Section 4, the procedure is applied to
experimental data and results of the estimated parameters for the two models are compared. The
conclusions of the work are summarized in Section 5.

2. Non-linear and viscoelastic models of foam

The two models of the dynamic, uni-directional behavior of the foam–rigid block (mass) system
shown in Fig. 1 are

m .x þ c ’x þ kx þ k3x
3 þ k5x

5 � k

Z t

�N

XN

i¼1

aie
�aiðt�tÞxðtÞ dt ¼ f ðtÞ ð4Þ

Fig. 1. The experimental rig for dynamic testing of foam–mass system.
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and

m .x þ c ’x þ kx þ k3x
3 þ k5x

5 þ aDax ¼ f ðtÞ: ð5Þ

These will be referred to in the rest of the paper as the hereditary model and the fractional
derivative model, respectively. m is the mass of the rigid block, k3 and k5 are the third- and fifth
order stiffness coefficients, c is a viscous damping coefficient, and f ðtÞ is the external force. In the
hereditary model N was chosen to be 2, which has been found to give better results than an N ¼ 1
model, but still may be lower than the optimal value [5]. The exponents (a1 and a2) were taken to
be complex conjugate pairs because in previous research [6] models with complex conjugate values
were found to give better response predictions than models with real viscoelastic parameters. In
the simplified version of the fractional derivative model the fractional derivative order ðaÞ and the
coefficient of this term ðaÞ are the viscoelastic parameters. The term in Eq. (3) corresponding to
the derivative of the instantaneous stress is assumed to be zero.

2.1. Linear hereditary model behavior

This model was studied in detail by Singh [5] and only a brief discussion is given here of the
influence of the viscoelastic terms on the linear model behavior. The frequency response of the
linear hereditary model is

HðjoÞ ¼
X ðjoÞ
F ðjoÞ

¼
1

�mo2 þ jcoþ k � kPðjoÞ
; ð6Þ

where PðjoÞ ¼
PN

i¼1 ai=ðjoþ aiÞ; and for N ¼ 2; PðjoÞ ¼ ð2jaroþ 2ðarar þ aiaiÞÞ=ð�o2 þ j2aroþ
jaj2Þ:
Based on earlier experimental results [5], model parameter values were chosen to be: N ¼ 2;

m ¼ 1 kg; c ¼ 10 N s=m; k ¼ 2500 N=m; a1;2 ¼ �0:4474:98i s�1; a1;2 ¼ 29:2376:57i s
�1: To

visualize the influence of the viscoelastic terms on the frequency response magnitude, +a1 was
varied from 0� to 180� and jaij was varied form 0.1 to 30. The results are shown in Figs. 2(a) and
(b), respectively. Results of varying Iða1Þ from 0 to 90 are shown in Fig. 2(c), and results of
varying Rða1Þ from 5 to 120 are shown in Fig. 2(d).
As shown in Fig. 2(a), for a fixed value of ja1j; the peak of jHðjoÞj becomes more dominant and

shifts to higher frequencies as the phase of the coefficient a1 increases. This effect is very similar to
decreasing viscous damping ðcÞ in a mass–spring–damper system. For the case where the
magnitude of the coefficient ja1j is increased while keeping the phase ð+a1Þ constant, the peak
amplitude of the frequency response decreases, while the resonance frequency increases (see
Fig. 2(b)). Therefore, an increase in ja1j appears to lead to an increase in both the equivalent
stiffness and the equivalent damping in the overall system.
The variation of the frequency response as a function of parameter ai is more complicated, as

shown in Figs. 2(c) and (d). When the imaginary part of a1 increases and its real part is fixed, the
peak amplitude in the spectrum first decreases and shifts slightly to the right, indicating an
increase in damping and stiffness. As Iða1Þ is increased beyond a critical value, the resonance
frequency starts to decrease and the peak amplitude decreases as well. This is followed by an
increase in peak magnitude and resonance frequency as Iða1Þ is further increased. As shown in
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Fig. 2(d), when the real part of a1 is varied between 5 and 120 and the imaginary part is fixed, the
damping appears first to increase and then decrease, while the frequency at which the peak occurs
also gets smaller as the real part of a1 increases. The changes in resonance frequency then are quite
small, thus indicating that Rða1Þ only has a small influence on the equivalent stiffness of the
system.
The above results illustrate that the viscoelastic terms can influence the overall stiffness and

viscous damping of the system, but the relationship is quite complex and the trends here may not
be universal. Changes in the values of the other fixed parameters may lead to different types of
changes as a particular viscoelastic parameter is varied. It is clear that the behavior is much more
complicated than that for a classical spring–damper model, and this may be advantageous when
modelling the complex properties of foam materials.

2.2. Characteristics of the linear fractional derivative model

The fractional operator is a generalization of the ordinary differential operator to the order of
fractional values. The most widely used definition of an integral of fractional order is via a
transformation called the Riemann–Liouville integral [20]:

DafxðtÞg ¼
daxðtÞ
dta

¼
1

Gð�aÞ

Z t

0

xðtÞ

ðt � tÞaþ1
dt; ao0; ð7Þ
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Fig. 2. The effect of variations in ai and ai on the frequency response of the linear hereditary model. m ¼ 1 kg;
c ¼ 10 N s=m; and k ¼ 2500 N=m: (a) jai j ¼ 5; argða1Þ: 0–180�; a1=2 ¼ 29:2376:57i; (b) argða1Þ ¼ 92�; jai j: 0.1–30, a1;2 ¼
29:2376:57i; (c) RðaiÞ ¼ 29:23; Tða1Þ: 0–90 rad=s; a1;2 ¼ �0:4474:98i; (d) Tða1Þ ¼ 6:75 rad=s; RðaiÞ: 5–120, a1;2 ¼
�0:4474:98i:
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where GðxÞ is the gamma function. For a > 0; the case considered here, one can utilize

DafxðtÞg ¼
daxðtÞ
dta

¼
dn

dtn

1

Gðn � aÞ

Z t

0

xðtÞ

ðt � tÞa�nþ1 dt
� �

; ð8Þ

in which n is the smallest integer that is larger than a: With this definition of the convolution
integral, the fractional derivative model readily demonstrates the dependence of the current state
on the history of response. Also, it is a fading memory operator in that it weights the recent past
more heavily than the distant past.
The Fourier transform of the fractional derivative term is [21]

FfDafxðtÞgg ¼ ðjoÞaFfxðtÞg; ð9Þ

if xðtÞ ¼ 0 for to0: F denotes the Fourier transform operator. The simplicity shown in the
frequency domain is an attractive feature of fractional operators, although the definition in the
time domain is complicated. As seen from Eq. (5) (neglecting the non-linear terms), when a ¼ 0;
the fractional derivative term becomes a pure stiffness term and is indistinguishable from the kx

term already in the model. When a ¼ 1; the fractional derivative term becomes a purely viscous
term of the same form as the c ’x term. When 0oao1; the fractional derivative term resembles an
intermediate status between purely elastic stiffness and purely viscous damping, which implies a
contribution to both stiffness and damping.
The frequency response of the linear system with the fractional term is

HðjoÞ ¼
X ðjoÞ
FðjoÞ

¼
1

�mo2 þ jcoþ aðjoÞa þ k
: ð10Þ

This frequency response was evaluated with nominal values set to: m ¼ 2:3 kg; c ¼ 5 N s=m;
k ¼ 283 N=m: The results when a was set to 0.5 and a was varied from 1 to 100 are shown in
Fig. 3(a). The results when a was fixed at 20 and a was varied between 0 and 1 are shown in
Fig. 3(b). Recall that the fractional derivative term aDaðxÞ combines both a stiffness and damping
effect. When a; the coefficient of the fractional term increases, there is a greater contribution to
both stiffness and damping. Thus, the amplitude at resonance goes down with increased damping
and the position of the peak moves to the right with increased stiffness. As a gets closer to 1, DaðxÞ
becomes more like a damping term and the contribution to stiffness decreases. Therefore, the
amplitude at resonance goes down and shifts to the left when a is increased.

2.3. Relaxation time constants in different models

As mentioned before, viscoelastic properties are very important to the understanding of the
dynamic properties of foam materials. Since viscoelastic behavior can be characterized by
relaxation and creep phenomena, it is useful to know the relaxation time constants which describe
how fast the stress decays in a stress-relaxation experiment.
In the hereditary models, 1=RðaiÞ are essentially the system time constants, whereR denotes the

real part of a complex number. To identify these material parameters, free vibration experiments
were carried out in previous research [5]. The Prony method was used in the system identification
of the material parameters. In one type of test, the foam–mass system was excited with an impulse
and because the transient response decays very fast, it was quickly dominated by noise. Thus, only
a short duration of the signal was available for analysis, and consequently only the short time
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constants in the range from 0.07 to 0:1 s were identified. To gain information about relatively
longer time constants, a quasi-static creep test was performed and the identified time constants
were found to be around 20 s; 13 min and 3:5 h: There is a visible gap between these two groups of
time constants and some other type of experimentation and system identification procedure may
be necessary to determine whether further time constants in the range 0.1–20 s exist for the foam
material.
In the hereditary model described here we have chosen N ¼ 2 even though there is clear

evidence that this is really too simple a model of the viscoelastic behavior. In the experiments
described below, an N ¼ 2 model appeared to generate reasonable approximations to the system
response, perhaps indicating that for this type of test only a few of the many time constants are
playing a major role in controlling the system response behavior.
Hereditary models contain a number of time constants. Plotting jaj vs. the decay rate ð1=tiÞ then

produces a discrete relaxation spectrum. For a fractional derivative model Enelund and Lesieutre
[22] hypothesized that the relaxation spectrum is continuous. In Rouse’s molecular theory of
viscoelasticity [23,24] an infinite number of discrete time constants are included in the viscoelastic
polymer model, but the time constants are related by tn ¼ t=n2 for n ¼ 1; 2;y : Bagley and
Trovik [19] extended this theory to establish a link between the fractional derivative and
hereditary models of stress–strain relationship for chains of polymer molecules. While
tantalizingly similar in form to the polymer models, the macroscopic models of the foam
behavior, as utilized in Eqs. (4) and (5), do not appear to be so easily related. Work continues in
this area and more details will be presented in a future work.
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Fig. 3. The effect of variations in a and a on the behavior of frequency response of fractional derivative model. (a)

a ¼ 0:5; a varies from 1 to 100, (b) a ¼ 20; a varies from 0 to 1. Other parameters are: m ¼ 2:3 kg; c ¼ 5 N s=m;
k ¼ 283 N=m:
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2.4. Harmonic balance prediction of steady state behavior

There is no closed-form solution available for non-linear equations of motion. If the input force
is harmonic, one can assume that the steady state response is periodic and an approximation to
this steady state solution can be derived by using the harmonic balance method [25]. For a
harmonic base excitation to the foam–mass system in Fig. 1, xðtÞ represents the relative
displacement of the rigid block with respect to the base of the fixture. The input force is f ðtÞ ¼
�mG cosðof tÞ; where G is the amplitude of the input acceleration, and of is its frequency.
The one-term harmonic balance solution can be assumed to be

xðtÞ ¼ Aejof t þ %Ae�jof t; ð11Þ

where A ¼ Ar þ jAi is the complex amplitude and %A is the complex conjugate of A: From the
properties of the fractional derivative operator, we know that

Dafejof tg ¼ oa
f e
jðof tþpa=2Þ: ð12Þ

By substituting Eq. (11) into Eq. (5), using Eq. (12) and comparing the coefficients of ejof t; we get

�mo2f A þ jcof A þ kA þ aAejpa=2oa
f þ 3k3A

2 %A þ 10k5A3 %A2 ¼ �mG=2: ð13Þ

Splitting the above equation into its real and imaginary parts, the following two equations are
generated:

PAr � QAi ¼ �mG=2; PAi þ QAr ¼ 0; ð14a;bÞ

with

P ¼ �mo2f þ k þ 3k3jAj2 þ 10k5jAj4 þ P0ðof Þ; ð15aÞ

Q ¼ cof þ Q0ðof Þ; ð15bÞ

where jAj is the modulus of A: P0ðof Þ and Q0ðof Þ are given by

P0ðof Þ ¼ aoa
f cos

p
2
a

� 	
; Q0ðof Þ ¼ aoa

f sin
p
2
a

� 	
:

Simpler expressions can be obtained if Eq. (13) is multiplied by %A and then split into its real and
imaginary parts which yields

PjAj2 þ mGAr=2 ¼ 0; QjAj2 � mGAi=2 ¼ 0: ð16a;bÞ

An equation for jAj can also be obtained by squaring and adding Eq. (16a,b) giving

100k25 jAj10 þ 60k3k5jAj8 þ f20ð�mo2f þ k þ aoa
f cosðp=2aÞÞk5 þ 9k

2
3gjAj6

þ 6k3f�mo2f þ k þ aoa
f cosðp=2aÞgjAj4 þ fð�mo2f þ k þ aoa

f cosðp=2aÞÞ
2

þ ðcof þ aoa
f sinðp=2aÞÞ

2gjAj2 � m2G2=4 ¼ 0: ð17Þ

This equation is a fifth order polynomial in jAj2: Only positive roots are valid since jAj is always
positive. Once the amplitude of A is known, the phase of the harmonic approximation to the
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periodic solution can be calculated from

+A ¼ tan�1ðAi=ArÞ ¼ tan�1
Q

�P


 �
: ð18Þ

The response can be predicted by using the above two equations if the material parameters are
known.
For the hereditary model, an equation similar to Eq. (13) can be derived [6]:

� mo2f A þ jcof A þ kA þ 3k3A2 %A þ 10k5A3 %A2

� k
a1

a1 þ iof

þ
a2

a2 þ iof

� �
A ¼ �mG=2: ð19Þ

Then, mirroring the derivation of Eqs. (14) and (16), the structure of the equations for the
hereditary model is seen to be the same, but P0ðof Þ and Q0ðof Þ are now given by

P0ðof Þ ¼ �k
arar þ aiai þ of ai

a2r þ ðof þ aiÞ
2

þ
arar þ aiai � of ai

a2r þ ðof � aiÞ
2

 !
;

Q0ðof Þ ¼ �k
arai � aiar � of ar

a2r þ ðof þ aiÞ
2

þ
�arai þ aiar � of ar

a2r þ ðof � aiÞ
2

 !
:

3. System identification

The system identification of the material parameters is based on Eqs. (14) or (16) and it is
assumed that Ar and Ai are known for a set of values of of : Denoting Eqs. (14a,b) (or equivalent
equations in hereditary model) or Eqs. (16a,b) as F1ðofiÞ and F2ðofiÞ; respectively, the estimation
for the material parameters (c; k; k3; k5; a; a) can be performed by minimizing the error function:

E ¼
XM
i¼1

ðjF1ðofiÞj
2 þ jF2ðofiÞj

2Þ; ð20Þ

where the ofi are the frequencies at which the steady state response is evaluated.
The minimization of this cost function results in a set of non-linear equations that need to be

solved to obtain the system parameters. The program ‘lsqnonlin’ in Matlab was used to find the
solution to these non-linear equations. This program is based on the trust region method in which
the cost function is approximated by a simpler function in the neighborhood (so called ‘trust
region’) of the current system parameters. After the trust region is determined with the aid of a
preconditioned conjugate gradient process, the new step is calculated and the system parameters
are modified [26]. This algorithm is sensitive to many set-up parameters including the bounds for
the parameters, the error tolerances, and the scaling of the parameters. Therefore, lower bounds
and upper bounds were set for all the system parameters. In particular, c and k were restricted to
be positive since negative values are not physically feasible. a was set to be between 0 and 1; and a

was allowed to be any value when c was included as a parameter in the model. The reason for
allowing a to be a negative value is discussed in Section 4.3. k3 was limited to be a negative value
and k5 was limited to be a positive value. These limits were based on our understanding of the
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system gained from fitting the hereditary model to the experimental data. The system parameters
were also scaled to be of similar magnitudes in order to avoid ill conditioning. In addition, a
Jacobian matrix was provided to save the number of function evaluations. The option of
‘PrecondBandWidth’ was set to infinity in order to fit the program to our case which does not
have many parameters to estimate. The stopping criteria in the program are satisfied when the
norm of the cost function or the difference between parameter values obtained in the last two
steps is less than the tolerances set to 10�20 and 10�18; respectively. The program indicates whether
convergence has been achieved.
Another way of solving this problem is to use a sub-optimal method introduced in Ref. [6]. If a

is known, the estimation of the remaining material parameters in Eq. (14) or (16) is a simple linear
optimization problem. This is true for both the hereditary and the fractional derivative models.
Motivated by the success of using this approach with the hereditary model, a fine grid of possible
values of a is formed from 0 to 1, and the rest of the fractional derivative model parameters are
estimated by using a linear least-squares formulation. Then the error E can be calculated for every
choice of a: The selected a and the other parameters corresponding to the minimum value of E are
the estimates of the material parameters. The grid can be further refined around the minimum to
improve the accuracy of the solution.
For the hereditary model, the sub-optimal method was used to estimate the system parameters.

Similar results can be obtained by using the direct non-linear estimation from ‘lsqnonlin’
program. For the fractional model, the ‘lsqnonlin’ program was almost always used. The sub-
optimal approach was also used for this problem to examine the error surface when there were
problems with convergence.
When applying these system identification techniques, there are several issues that must be

addressed. These include the choice of the cost function, the frequency resolution and the amount
of data. These are discussed below.

3.1. Choice of the cost function

There are two sets of equations that can be used as cost functions for identification: Eqs. (14a,b)
or Eqs. (16a,b). The second set of equations is obtained by multiplying the original equation with
%A; which is the complex conjugate of the amplitude of the response. Ideally, if the model is perfect
for the system under investigation, these equations should have a unique solution and this
multiplication by a constant should not affect the estimation results. However, because of noise
and model imperfections, different predictions might be expected from the two cost functions
since the multiplication by %A effectively weights the cost function more strongly at points where A

is large.
To investigate this effect, response data were simulated using Eqs. (17) and (18) with realistic

parameters that give a reasonable fit to experimental data at 50% compression and a �0:25 mg N
base excitation. Uniformly distributed zero-mean white noise was added to ArðojÞ and AiðojÞ
separately. The width of the distribution was selected to be a percentage of the peak value of
ArðojÞ and AiðojÞ: Noise levels varied from 0.1% ð60 dBÞ to 1.9% ð34 dBÞ of the peak value. This
ranged from slightly worse to slightly better than the noise conditions in the experiment. By
adding noise in this way, a better signal to noise ratio was obtained in the peak region which is the
situation in the experiment. The material parameters were estimated by using the direct non-linear
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optimization algorithm on data from 1000 simulations at each noise level, and using the two types
of cost functions. The error bars represent the mean estimation7the standard deviation of the
estimates divided by the true value. The viscous damping parameter was not include here; this
omission is discussed in Section 4.3.
We can see from Fig. 4 that at low noise levels, the predictions are very close to the original

value for both cost functions. As expected, the bias and variance of the estimates increase with
increasing noise. At higher noise levels, the cost function that includes multiplication by %Aðof Þ
gives slightly better estimates of k; a and a: Similar patterns were observed from hereditary model
simulations. The data near the peak region, which have a better signal-to-noise ratio, are weighted
more than those far away from the peak in the response. Thus the emphasis of this portion of data
should help in the estimation of parameters. In light of this, the cost function with the
multiplication with %Aðof Þ is used in the analysis and estimation from the experimental data.

3.2. Frequency resolution of data

The data obtained from experiments need to have sufficient resolution in frequency to capture
the essential features of the response. To study the effect of the frequency resolution on the
estimates of the material parameters, simulations similar to those described in Section 3.1 for the
fractional derivative model at 50% compression and G ¼ �0:25 mg N were conducted. Again, the
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viscous c term was not included in the simulation because its inclusion tends to increase the
variance of the parameter estimates. Uniformly distributed noise at a level of 1.9% of the largest
amplitude at the finest resolution was added to the simulation data. The frequency range spans
from 2 to 8 Hz: The frequency resolution at each level is twice as that for the previous level, i.e.,
level 1 has a resolution of 0:5 Hz; level 2 has a resolution of 0:25 Hz and so on. Level 5 has a very
fine frequency resolution of 0:03125 Hz: Note that the upper limit constraint ðao1Þ was not
applied to a during the optimization procedure in this case; this issue is discussed in more details
in Section 4.3.
The normalized mean values and standard deviations of the estimated parameters from 1000

simulations are shown in Fig. 5(a) for the case of a ¼ 0:9: It is observed that the standard
deviations of the estimates for system parameters decrease as the resolution gets finer. This could
be because the better resolution provides more information on the behavior of the system, or
because more data points are taken with a higher resolution in the fixed frequency range (it is
referred to as the ‘n effect’ in Fig. 5). With more data, it would be expected that the standard
deviation of the estimates becomes smaller.
To remove the effect of taking more data when using a higher resolution, several data sets from

low resolution simulations were combined in the estimation. By doing so, 200 points were used at
each resolution level. The results of the estimations are shown in Fig. 5(b). It can be seen that
there appears to be only small change in the mean values and standard deviations of the estimated
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parameters as the resolution level increases. It should be noted, however, that a resolution of 1 Hz
produced extremely poor results (not shown) because at this resolution very little detail in the
frequency response is retained.
As illustrated in Fig. 5(a), lower variance estimates for the viscoelastic parameters a and a were

found at the lowest frequency resolution of 0:5 Hz; which is considered to be the worst case in
terms of system information. To investigate this problem, similar simulations were conducted for
different values of a: It was observed that this problem only happens when a is close to 1. The
results for a ¼ 0:5 are shown in Fig. 5(c). It can be seen that the standard deviations of estimates
decrease as the frequency resolution increases. No substantial changes can be observed in either
the mean values or the standard deviations of estimates when the number of data points are the
same at each resolution level as shown in Fig. 5(d). It is not very clear at this moment why the
cases when a is close to 1 lead to counterintuitive results in the variance of the estimated
parameters at frequency resolution of 0:5 Hz and the problem is currently being investigated.
There are also interesting bias effects: with a few exceptions, when more data points are used

the bias changes, often leading to larger bias with the increased number of data points.
Simulations with different numbers of data points were carried out at a fixed frequency resolution
level of 0:5 Hz for a ¼ 0:5 and 0.9. At each level in these simulations, the number of data points is
twice as that of the previous level, i.e., level 1 has 14 data points, level 2 has 28 data points,
obtained by combining two data sets of the previous level, and so on. Uniformly distributed noise
as described in previous simulations is added to the simulation data. The results of estimation are
shown in Fig. 6 and again it is observed that the bias of the estimates increases as the number of
data points increases and this effect is more pronounced when a approaches 1.
The distributions of the normalized parameter estimates for the case of a ¼ 0:9 are shown in

Fig. 7. The probability density functions of the estimated parameters, together with a Gaussian
probability density function, generated by using the estimated mean and standard deviation of the
estimates, were estimated from 30,000 simulations. The vertical line represents the true normalized
value 1. The results reflect the same shift in bias shown in Fig. 6, but in addition, the results clearly
indicate the complexity of the statistics of the parameter estimates. As seen from the figure, the
probability density functions become Gaussian as the number of data points used in the
estimation increases.
From this investigation we can conclude that increasing the resolution above 0:25 Hz (the

resolution used in the experimental work reported in the next section) results in only small
improvements in the estimates. The estimates deteriorate significantly if the resolution is below
0:5 Hz: As noise decreases, bias errors decrease, but bias was in general worse when we used more
data points in the estimation. Thus in the case where several data sets are available, it is better to
average sets at each frequency (to reduce noise) before proceeding to the estimation. Using all
original noisy data simultaneously in the estimation appears to lead to an increase in parameter
bias.

4. Identification from experiments and simulations

The foam–mass system shown in Fig. 1 was harmonically excited through motion of its base
that was attached to an MTS hydraulic shaker, and the steady state responses were recorded at
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four excitation levels (0.1, 0.15, 0.2, and 0:25 mg N) and at three compression levels (30%, 40%
and 50%). The foam sample used is a 7:62 cm� 7:62 cm� 7:62 cm cube. The masses that were
used to obtained the desired three compression levels are 2.29, 2.86, and 3:38 kg; respectively.
Since the foam is a complex viscoelastic material whose static properties are different from the
dynamic properties, the test was performed very carefully in order to achieve consistent
measurements. The foam was first pre-loaded and several hours were allowed for the foam to
settle down to its static equilibrium position. Before the measurement, dynamic exercise was
conducted for 3 h to allow the foam to reach the true equilibrium compression level and then the
steady state response was recorded after steady state behavior had been achieved at each
frequency of excitation.
There are several practical issues in the experiment that affect the model parameter estimates.

The top plate sitting on the foam (see Fig. 1) may have rocking motion if the foam is not
homogeneous and of constant thickness or the four posts are not perfectly aligned. The fixture
may also introduce dry friction that is not considered in the models. The measurement noise is
small in this case since the signal-to-noise ratio in the single frequency excitation experiment is
relatively high. The details concerning the experimental issues are discussed in detail in Ref. [27].

4.1. Parameter estimation and prediction from experimental data

System identification procedures based on both models were applied to the experimental data.
The frequency range of the experimental data is from 2 to 8 Hz:Data sets used had a resolution of
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0:5 Hz below 3:5 Hz and above 5:5 Hz; and a resolution of 0:25 Hz in the range from 3.5 and
5:5 Hz: The parameters of the fractional derivative model were estimated directly by using the
non-linear optimization method while the sub-optimal method was used for the hereditary model
estimation. The predictions at 30% and 50% compression level from both the models together
with the measured responses are shown in Figs. 8 and 9, respectively. The estimated parameters at
the 50% compression level are listed in Tables 1 and 2 for the fractional derivative model and the
hereditary model, respectively.
From the results shown in Table 1, it can be seen that for the fractional derivative model there is

much variation in the estimates of parameters from one level to another. The magnitudes of the
non-linear stiffness coefficients k3 and k5 decrease as the input amplitude increases. The same
pattern for k3 and k5 is also observed in the hereditary model, as shown in Table 2. The estimates
of k3 and k5 from the two types of models are very close to each other for the same level of
excitation. The estimates of the viscoelastic parameters a and a in the hereditary model are also
seen to vary considerably with the input amplitude. The estimates of c and k remain relatively
stable for all input amplitudes in the hereditary model.
As shown in Figs. 8 and 9, the two models provide fairly good predictions in both amplitude

and phase at low input acceleration for both of the compression levels. Only at higher input levels
(0.20 and 0:25 mg) does the prediction from the fractional derivative model not match the
experimental data very well below the resonance region. The hereditary model does a reasonably
good job even at these high input levels. This may be an indication of the inadequateness of the
fractional derivative model for high compression levels and input excitations.
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4.2. Relationship between hereditary and fractional derivative models

It was found that the fractional derivative model appeared to have less flexibility in modelling
the experimental data. To examine this further, the response was simulated with one type of
model and a model of the other type was identified with this simulated data. At low levels of
compression (30%), the estimated model responses were close to the simulated responses

Table 1

Estimated fractional derivative model parameters at different input levels for 50% compression

G (N) �0:1 mg �0:15 mg �0:2 mg �0:25 mg
c ðN s=mÞ 14.0 595 26.3 1317

k (N/m) 0:181� 103 3:98� 103 3:53� 103 3:38� 103

(Constrained) ð4:10� 103Þ ð3:71� 103Þ ð3:19� 103Þ ð3:12� 103Þ
(Unconstrained) ð4:10� 103Þ ð3:96� 103Þ ð3:43� 103Þ ð3:40� 103Þ

k3 ðN=m3Þ �8:11� 107 �2:70� 107 �1:05� 107 �0:88� 107

(Constrained) ð�8:08� 107Þ ð�2:62� 107Þ ð�1:02� 107Þ ð�0:85� 107Þ
(Unconstrained) ð�8:08� 107Þ ð�2:72� 107Þ ð�1:08� 107Þ ð�0:90� 107Þ

k5 ðN=m5Þ 118� 1010 12:89� 1010 2:04� 1010 1:39� 1010

(Constrained) ð118� 1010Þ ð12:67� 1010Þ ð1:98� 1010Þ ð1:35� 1010Þ
(Unconstrained) ð118� 1010Þ ð12:96� 1010Þ ð2:08� 1010Þ ð1:41� 1010Þ

a ðN=maÞ 3:81� 103 �0:60� 103 �0:08� 103 �1:32� 103

(Constrained) (32.27) (15.79) (14.11) (14.19)

(Unconstrained) (32.27) (7.16) (6.25) (5.55)

a 0.019 0.992 0.523 0.996

(Constrained) (0.84) (1.00) (1.00) (1.00)

(Unconstrained) (0.84) (1.26) (1.28) (1.33)

The parameters in parentheses are estimates from the model without the viscous damping term. ‘Constrained’ and

‘unconstrained’ correspond to the results from the optimization procedures with and without applying the upper limit

to a respectively.

Table 2

Estimated hereditary model parameters at different input levels for 50% compression

G (N) �0:10 mg �0:15 mg �0:20 mg �0:25 mg
c ðN s=mÞ 18.0 20.2 20.1 19.9

k (N/m) 4:18� 103 3:65� 103 3:12� 103 3:03� 103

k3 ðN=m3Þ �8:12� 107 �2:67� 107 �1:11� 107 �8:99� 106

k5 ðN=m5Þ 110� 1010 11:9� 1010 1:94� 1010 1:31� 1010

a ðs�1Þ �0:09970:355i �0:27270:037i �0:46970:232i �0:46770:162i

a ðs�1Þ 2:74721:8i 3:62724:8i 3:21721:68i 3:58722:0i
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regardless of which model was used to simulate the response, as shown in Fig. 10. At higher
compression levels (50%) and at high levels of excitation the hereditary model fit the fractional
model response well, but not vice versa; this is illustrated in Fig. 11.
In Bagley and Torvik’s derivation [19] of the fractional derivative polymer model from a

hereditary-type model with a large number of time constants, it appeared that the fractional
derivative model was a compact description that encompassed a wide variety of time constants.
The derivation was based on a fixed relationship between the time constants ðtn ¼ t=n2Þ which
leads to a fractional order of 1=2: If this were the case here, we would expect that a large number
of exponential terms in the kernel of the viscoelastic model would be required to model the data
from fractional derivative model. However, this is clearly not the case for this system and this type
of excitation. While there are two hereditary kernel terms, they are a complex conjugate pair and
thus only one decay rate ððtime constantÞ�1Þ is associated with this pair of terms. It appears that
only one time constant is sufficient to reproduce the fractional derivative model behavior. This
may be an indication that the relationship between the time constants is not as straightforward as
the one used in the polymer model derivation, or that under this excitation very few of the infinite
number of time constants play a role in the response.

4.3. The role of the viscous damping term

The estimates of the linear parameters, including the viscous damping coefficient c and the
stiffness coefficient k; vary considerably for different input amplitudes in the fractional model.
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Recall that the fractional derivative term aDaxðtÞ affects both stiffness and damping. Whether the
linear velocity proportional damping term is necessary in this model is an interesting question.
System identification and the prediction of response were carried out for the non-linear fractional
derivative model for the case when c is not included. As shown in Fig. 12, the predicted response
for 50% compression level data is hardly affected by the exclusion of the c term. The results for
other compression and input levels exhibit similar behavior. The details of these results are
omitted here. This indicates that c is a redundant variable in the fractional derivative model and
that its presence may cause the other parameters to vary significantly because many combinations
of the terms result in almost identical predictions.
The estimated parameters for the fractional derivative model without the c term for 50%

compression are shown in Table 1 in parentheses (corresponding to ‘constrained’ case). It can be
seen that the estimates of the non-linear parameters k3 and k5 remain very close to the previous
results. The variations in the other parameters (k; a and a) are smaller when c is not included in
the model. The value of stiffness k decreases with the increased excitation level. a also exhibits a
slightly decreasing trend with increasing excitation level. Note that the fractional order a becomes
1 for the higher excitation levels, which indicates that the fractional model effectively evolves to a
spring–damper model at these levels. This result may also be explained by the fact that a was
constrained to be equal to or less than 1 in the optimization process. The parameters were re-
estimated without this constraint and the results are also shown in Table 1 (corresponding to the

2 4 6 8
0

0.002

0.004

0.006

0.008

0.01

0.012

2 4 6 8
0

50

100

150

200

ph
as

e 
∠

X

frequency f (Hz)

2 4 6 8
0

0.002

0.004

0.006

0.008

0.01

0.012

m
ag

ni
tu

de
 |X

| (
m

)

2 4 6 8
0

50

100

150

200

ph
as

e 
∠

X
 (

de
gr

ee
)

frequency f (Hz)

(a) (b)

Fig. 11. Estimated model predictions of simulated data at 50% compression and G ¼ �0:25 mg N: (a) Hereditary
simulation and estimated fractional derivative model predictions. (b) Fractional derivative simulation and estimated

hereditary model predictions. o, simulated data; —, predicted response.

R. Deng et al. / Journal of Sound and Vibration 262 (2003) 391–417 409



‘unconstrained’ case). It can be seen that if a is not constrained, the optimized values for a are
usually between 1 and 2, which represents a term between a viscous damping and an inertia term.
However, the predicted responses are very close to the results when a was limited between 0 and 1.
This is due to the insensitivity of the function used in the identification algorithm to the small
changes in the parameters a and a; and this is another indication of the insufficiency of the
structure of the fractional derivative model to model responses at high compression and excitation
levels.
To investigate the problem of the redundancy of the viscous damping term further, simulations

were carried out at different noise levels. Uniformly distributed noise at levels from 0.1% to 1.9%
with respect to the peak value of the response, as described earlier, was added. At each noise level,
1000 simulations were conducted and the normalized mean value and standard deviation of the
estimated parameters before and after c was removed were calculated. The results are shown in
Fig. 13. It is very clear that after c is removed, the estimation of the material parameters is more
accurate and that it is therefore better to compare the variation of parameters under different
experimental conditions with c excluded.
Similarly one might ask, whether the viscous damping term is implicitly incorporated in the

viscoelastic kernel of the hereditary model? When the direct non-linear estimation procedure was
used to identify the system parameters of the hereditary model without the c term, difficulties were
encountered in obtaining converged estimates of the system parameters. It is suspected that the
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error surface is very flat in the parameter space when c is excluded from the model and that it is
difficult to find the minimum for this case. Therefore, the sub-optimal identification procedure
without the c term was used to investigate the error surface properties. A grid of values of ar and
ai was specified and the error in the estimation at each combination of ar and ai was plotted. This
error surface is very flat and does not have a strong minimum or, if a minimum does exist, it is
highly localized and the grid utilized is not fine enough to detect it. The level curves of the error
surface for determination of the viscoelastic parameters ar and ai is shown in Fig. 14(a). It can be
seen that the dark region, which represents the location of the minimum, is very flat and that it
extends to the region where the real part of a and the imaginary part of a are quite large. A
minimum can usually be found in the extended flat region if the error surface is zoomed in, as
shown in Fig. 14(b). Around the minimum is an insensitive region where the cost function is
affected very little by the variations in ar and ai: This is perhaps an indication of the insufficiency
of the model structure.
The predictions of the response based on the estimated parameters when c is excluded from the

hereditary model are shown in Figs. 15 and 16 for the 50% and 30% compression levels,
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respectively. It can be seen that the predictions from the model without the c term do not match
the experimental data as well as those from the model with the damping term c at the higher
compression level (50%). However, at the lower compression level (30%), the differences become
less significant, as illustrated in Fig. 16. A possible explanation of this observation is that the
foam’s behavior is more complicated at higher compression levels and input amplitudes, and the

Fig. 14. Level curves of the error surface ðlnjEjÞ for the hereditary model sub-optimal estimation for 50% compression

experimental data at G ¼ �0:25 mg N: (a) The global error surface, (b) The local error surface around the minimum.
The viscous damping term is not included in the model.
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Fig. 15. Measured and predicted response from hereditary model with and without the c term. (a) 50% compression

level and G ¼ �0:20 mg N; (b) 50% compression level and G ¼ �0:25 mg N: o, measured responses; —, response
predicted with c in the model; ? response predicted without c in the model.
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additional damping term helps model this behavior. This may also explain why the fractional
derivative model cannot fit the experimental data very well at these high compression and input
levels. At the same time, because of the characteristics of this fractional derivative term, even an
explicit damping term in the form of viscous damping does not help the estimation. This indicates
that some other damping mechanism needs to be included to fully represent the behavior of foam
materials. Patten et al. [7] introduced a quadratic non-linear damping model for seat cushion. It
was assumed that the dissipation of energy in foam under dynamic load is due to the fluid flow
loss introduced by the fluid contained in foam. The model prediction matched well with the
measured frequency response of the mass–seat system at various input levels. The quadratic
damping model may help improve the performance of the fractional derivative model at high
compression and excitation levels. In addition, the micro-structural models [28,29] showed that
when foam is highly compressed, the material struts that form the matrix of the foam may rub
against each other and that the dry friction should be considered for the determination of energy
loss. Therefore, incorporating an internal dry friction model may also be an option for the
improvement of foam models.

4.4. A further note on the fractional derivative model

To explore the performance of the fractional derivative models further, the full fractional
derivative model represented by Eq. (3) was incorporated into the foam–mass system, resulting in
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Fig. 16. Measured and predicted response from the hereditary model with and without the c term. (a) 30% compression

level and G ¼ �0:20 mg N; (b) 30% compression level and G ¼ �0:25 mg N: o, measured data, —, response predicted
with c in the model; ?; response predicted without c in the model.
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the equation of motion

m .x þ k3x
3 þ k5x

5 þ Fd ¼ f ðtÞ; ð21Þ

where Fd is the restoring force represented by the fractional derivative model and is given by the
solution to

Fd þ a1D
aFdðtÞ ¼ kx þ a2D

axðtÞ: ð22Þ

Here, the two a’s are chosen to be the same and a1 and a2 are the coefficients of the two fractional
derivative terms. The viscous damping term is not included again for the reasons discussed in
Section 4.3. This model will be referred to as the two-term fractional derivative model while the
previous model will be called the one-term fractional derivative model.
Assuming the one-term harmonic balance solution, the above two equations lead to the same

two equations, Eqs. (15) and (16), except that the functions P0ðof Þ and Q0ðof Þ are now given by

P0ðof Þ ¼
ða2oa

f cosð
p
2 aÞ þ kÞð1þ a1oa

f cosð
p
2 aÞÞ þ a1a2o2af sin

2ðp2 aÞ

1þ 2a1oa
f cosð

p
2
aÞ þ a21o

2a
f

;

Q0ðof Þ ¼
a2oa

f sinð
p
2
aÞð1þ a1oa

f cosð
p
2
aÞÞ � ða2oa

f cosð
p
2
aÞ þ kÞa1oaf sinðp

2
aÞ

1þ 2a1oa
f cosð

p
2
aÞ þ a21o

2a
f

:

The material parameters were then identified from the experimental data by using the
identification procedure based on the above equations, and the predicted responses were
compared with the predictions from one-term fractional derivative model and the experimental
data. Again, the material parameters were estimated from the optimization procedures with and
without an upper limit on a and the predicted results are similar in both cases as discussed in
Section 4.3. The results at 30% compression and �0:2 and �0:25 mg N input levels are shown in
Fig. 17. In these cases, although the predictions of amplitude in the low-frequency region are
improved slightly, more discrepancies in phase are observed, especially in the high-frequency
region. It is noted that the resonance predicted at the �0:25 mg N input level extends beyond the
experimental response. However, the response at points where the experimental data are available
is well predicted. At other compression and input levels, it was also found that the predictions of
the response from the two-term fractional derivative models are very close to those predicted from
the one-term fractional derivative models. Thus, in contrast to the hereditary model, the two-term
fractional derivative model does not have sufficient or appropriate structure to capture the foam’s
behavior over a large range of compression and input levels.

5. Summary, conclusions and comments

A hereditary model and a fractional derivative model, both with non-linear elastic elements,
were introduced to describe the dynamic behavior of flexible polyurethane foam under
compression and dynamic loading. In these models, the non-linear elasticity was incorporated
in the form of third- and fifth order polynomial stiffness terms. Viscoelastic properties were
modelled either by a hereditary integral with a relaxation kernel consisting of two exponential
terms or by a fractional derivative term. A brief introduction to the hereditary and fractional

R. Deng et al. / Journal of Sound and Vibration 262 (2003) 391–417414



derivative model characteristics was also given and the associated relaxation behavior in both
models was discussed. One-term harmonic balance solutions were derived for both models
subjected to harmonic excitation and the resulting equations were used in the system identification
procedure. A direct non-linear optimization method based on the sub-space trust region
algorithm, and a sub-optimal method which results in a linear optimization after fixing one of the
model parameters, were described. The one-term harmonic balance equations were also used to
predict the response of the estimated model and to generate simulation data to investigate
frequency resolution and noise issues.
Results of simulations showed that the choice of cost function would affect the estimation of

the material parameters and a set of equations that weighted the higher amplitude resonance
region more strongly yielded more accurate results, probably because this region contained data
with the higher signal-to-noise ratio. Therefore, cost functions in this form were used in system
identification from the experimental data.
Steady state response data from experiments where the foam was compressed at various levels

and excited at four different input amplitudes from 0.1 to 0:25 mg N were used to estimate the
model parameters. Both models provided reasonably good predictions of the amplitude and phase
of the response at low input levels. The fractional derivative model’s performance was poorer at
the higher input amplitudes. Simulations also showed that the fractional derivative model utilized
did not have enough structure to fit the data generated by the hereditary model at high input and
compression levels while the hereditary models fitted the data generated by the fractional
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Fig. 17. Measured and predicted responses from the one-term and the two-term fractional derivative model. (a) 30%

compression level and G ¼ �0:2 mg N: (b) 30% compression level and G ¼ �0:25 mg N: o, measured data; -.-,
predicted response from the one-term fractional derivative model; —, predicted response from the two-term fractional

derivative model.
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derivative model well. No substantial improvement was observed in the model predictions when
an additional fractional derivative term was included. Two relatively simple fractional derivative
model forms were investigated. It is possible that a fractional derivative model with a different
structure may be more appropriate; this requires further investigation.
The viscous damping term was found to be a redundant parameter in the fractional derivative

model since the damping is implicitly represented by the fractional derivative term. It is also not
necessary in the hereditary model when fitting to the low compression level experimental data
although the presence of the c term yields a better estimation at higher compression levels. This
may be explained by the fact that the foam’s behavior becomes more complicated at higher
compression and input levels and the additional term, even if it is not the most appropriate, helps
to fit the data. It is clear that some damping mechanisms other than those presented in the
viscoelastic terms, see for example Ref. [7], need to be considered to model the damping properties
of the foam material more accurately.
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